Tuesday, December 22, 2015

Dear High School Student

It took a letter from a high schooler to bring me back to this blog. Yes, I've been absent for about 6 months now, not because I'm not blogging, but because I have been using The Foodie Farmer Facebook page as my means of "blogging". It works well for me especially to illustrate whats going on the farm day in and day out, and frankly I didn't have anything to write about. But that has now changed. Today, this post went up on Forbes and yes, the student I am responding to did receive the original letter a couple weeks ago.


POST WRITTEN BY
Jennie Schmidt, MS, RD


Jennie is a Maryland farmer. She is also a registered dietitian who speaks about food and farming systems, sustainability and family farms.


A photograph of Jennie’s farm in Maryland during the annual wheat harvest. (Image Credit: Jennie Schmidt)
Right after Thanksgiving, I received a letter in the mail from a high school student concerned about the cost of GMO labeling and identity preservation based on some readings they had done in class. The first thought that struck me was how well written, thoughtful, and respectful the letter was. My second thought was how awesome it was that a teacher would facilitate such an undertaking with a student when they could have easily taken it to social media and had an entirely different approach. I knew right away, I would respond because civil discourse is often what is most lacking in today’s society and around the topic of GMOs specifically. The student expressed concern about the cost of identity preservation and segregation of seeds based on my Foodie Farmer blog “The Cost of GMO Labeling”. They expressed support for the idea that farmers should be growing “all natural crops without altering genes.” Responding to the letter gives me the opportunity to welcome further discussion and if I’m lucky, host them on my farm. As time consuming as it is, I have found the most effective means to communicate about agriculture and help consumers understand what farming practices mean and what their implications are, is to have people visit. I hope the student and teacher take me up on the offer.

Dear High School Student,                                                                                                           December 9, 2015
                Thank you for your letter concerning our use of biotechnology on our family farm. I appreciate that while your position differs from ours, your letter was polite and respectful. That aspect is often absent in conversations around the topic of GMOs.
                Our family farm has been practicing sustainable agriculture in the United States for 3 generations. We have simultaneously practiced “conventional”, “biotech” and “certified organic” farming systems on our 2000 acres. Each of these systems has advantages and disadvantages and what’s important for each family farm is to decide what is best for their soil. Schmidt Farms has been using “GMO” seeds since 1998, 2 years after they received government approval. We also grow NonGMO crops every year however we no longer grow any certified organic crops. If you read my Foodie Farmer blog “GMO vs NonGMO: The Cost of Production”, you saw that the benefits to our farm are important. While I haven’t finished calculating the figures for this year’s harvest, historically crops grown from “GMO” seed have higher yields than our non-GMO crops. That’s important because if we do not have enough crops to sell, then the farm cannot pay its employees or pay its bills. I don’t think anyone would want to work for a business and not bring home a paycheck. We would also not want to have to sell the farm because we couldn’t make ends meet.
                Another reason we grow GMO crops is because they are good for our soils which is good for the Chesapeake Bay. I’m sure you’ve heard that the water quality in the bay is poor and that one of the biggest pollutants is sediment. Sediment comes from exposed soil from housing developments, construction, and exposed fields. Sediment blows away in the wind and runs off in the rain. About 80% of the farm fields in Maryland are “no-till” or “conservation tillage” meaning they have little to no disturbance of the soil and no deep plowing. Biotechnology has helped facilitate the reduction of sediment into the Chesapeake because farmers are better able to control weeds without plowing or disturbing the soil. How agriculture is helping meet the Chesapeake water quality goals can be found at: stat.chesapeakebay.net/BayTAS. No-Till agriculture is a very important conservation practice for farmers in Maryland.
                One of the “GMO” crops we grow are high oleic acid soybeans. We have to protect their genetic identity through segregation just like we have to protect the genetic identity of our nonGMO soybeans which go for tofu. The high oleic acid soybeans have no transfats which is an unhealthy type of fat and is being used to eliminate transfats in cooking and packaged foods. These soybeans have to be protected from nonGMO soybeans because in order to have the benefit of high oleic acid, they cannot be contaminated by nonGMO beans which don’t have the same fat content. So this example is the opposite of what most people think. The GMO crop needs to be protected from the nonGMO crop so that the oil derived has the high oleic acid content it is supposed to have and not the oil content of other soybeans. The issue of seed segregation cuts both ways, depending on the market demand for different traits. My point in the Cost of GMO Labeling blog is that to truly segregate by trait through the entire supply chain for “commodity” crops ie: general, non-specialty corn or soybeans would be prohibitively expensive.
                There are a variety of different plant breeding techniques that are used to modify seeds for crops.  You said in your letter than you wanted to see farmers grow “all natural crops without altering genes” and unfortunately, that’s impossible. Every crop we eat has been domesticated and therefore has altered genes. All types of plant breeding techniques alter genes. That’s the mechanism by which humans domesticated wild plants over time to become food crops. Plant breeding includes: traditional cross breeding, hybridization, mutagenesis, and genetic engineering . Each of these breeding types alters the genes by changing the DNA of plants. All of them except genetic engineering are approved for use in organic agriculture so your best bet if you choose to avoid GMO is to buy organic or buy foods labeled by the NonGMO Project but regardless, all food contains altered genes.
                As a Registered Dietitian, I have studied biotechnology which was the focus of my Masters degree. In addition, I have served for 5 years on a workgroup for the Academy of Nutrition and Dietetics reviewing the science around the safety of foods produced from biotech crops. The consensus is the safety of these foods is equal to the safety of foods produced through conventional breeding practices I mentioned above. As a mom of two high school students myself, the safety of the food we grow on our farm is critical because my family also eat what we grow. I encourage you to continue to seek more information. Nothing is better than to do research on both sides of any issue so that you have the full story to make a conclusion. Two very good resources are Biofortified.org and geneticliteracy.org which publish information about agriculture as well as health and other genetic issues.
                Thank you for reaching out to me. Again, I do appreciate civil discourse on this topic and I appreciate that at your age, you took this step to have an intelligent discussion on the topic. If you, your teacher, or your class is ever interested in a tour of our farm, please contact me. We are not embarrassed or ashamed of what we do and are happy to share our experiences with farming systems and the crops we grow with folks who are truly interested in learning where their food comes from.

Sincerely,
Jennie Schmidt
The Foodie Farmer